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Abstract

The tensile properties of concrete can be enhanced substantially by incorporating high strength and small diameter

short ®bers, which leads to ®ber reinforced concrete (FRC). For this reason, FRC has been widely used in infra-

structures, where tensile cracks may occur. However, an analytical model for such a material is still lacking. In this

article, an attempt was made to model the behavior of FRC, which shows a hardening response in tension, based on the

continuum damage mechanics (CDM). In the material, conventional concrete (a cement±sand±coarse-aggregate±water

mix) was used as the matrix, and short steel ®bers were used as the reinforcement. The quasi-brittleness of the matrix

and the ®ber±matrix interfacial properties were taken into consideration. Results show that the model-predicted stress±

strain curves agree well with those obtained experimentally. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a conventional ®ber reinforced concrete (FRC), the ®ber content is usually within the range of 0.2±2%
by volume (Zollo, 1997). At such a low ®ber content, the tensile response of FRC would assume a non-
hardening type, which is characterized by the widening of a single crack, similar to an unreinforced concrete
(Li, 1998). It has been reported that strain hardening and multiple cracking behavior can be achieved, when
aligned continuous ®bers were used in the composite (Aveston et al., 1971; Li et al., 1992). Such a phe-
nomenon was also observed in cementitious composites containing a higher volume fraction (say, 8%) of
randomly distributed short ®bers (Naaman and Homrich, 1989). Analytical models of this kind of behavior
were also developed (Li and Leung, 1992). In these composites, the ®bers can, during loading, provide
su�cient bridging forces to suppress crack opening and strain localization, and to yield multiple cracks. It
should be pointed out, however, that the matrix of the investigated composite was either cement paste,
mortar or cementitious slurry. Coarse aggregates were not incorporated.

Recently, it has been reported that the FRC containing short ®bers can also achieve a strain hardening
type response when the ®ber content is high enough, in which conventional concrete was used as the matrix

International Journal of Solids and Structures 38 (2001) 777±793

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +852-2358-8751; fax: +852-2358-1534.

E-mail addresses: celfm@ust.hk (F. Li), zongjin@ust.hk (Z. Li).

0020-7683/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S00 2 0-7 6 83 (0 0 )0 00 3 4- 2



and short steel ®bers were used as the reinforcement (Li et al., 1998). For these FRCs, as the concrete
matrix is a quasi-brittle material, which is mechanically di�erent from a cement paste or mortar matrix that
can be approximated as a brittle material, the conventional linear elastic fracture mechanics or micro-
mechanics cannot be directly applied to model their behavior (Shah et al., 1995).

In this article, a nonlinear analytical model based on the concept of continuum damage mechanics
(CDM) is developed to characterize the tensile stress±strain response of the FRC. A parallel bar arrange-
ment of the composite is ®rst used to establish the equilibrium equation. A basic governing equation is then
derived coupling with the damage law of the matrix and that of the ®bers. The damage evolution is then
evaluated by considering the damage evolution of the matrix concrete and that of the ®ber±matrix interface.
Numerical results obtained from the constitutive equations of this model are compared to those obtained
from the experimental investigations.

2. The analytical model

As the mechanical response of an FRC is closely related to the nucleation and progression of a multitude
of microcracks in the matrix, the CDM provides a possibly suitable method for developing an analytical
model of the mechanical behavior of an FRC. The concept of CDM has been successfully applied to plain
concrete (Karihaloo and Fu, 1990a,b; Lùland, 1980; Mazars and Pijaudier-Cabot, 1989). Attempts have
also been made to apply this concept to the modeling of a FRC (Borderie et al., 1992; Fanella and
Krajcinovic, 1985; Stang et al., 1990b). A one-dimensional analytical model for the direct tensile response of
an FRC, based on the concept of CDM, will be described in this article. It is assumed that before the matrix
damage is initiated, the material behaves as a two-phase composite material. After that, as deformation
increases, the matrix and the ®ber will undergo independently di�erent damage processes: the damage of the
matrix concrete evolves in a similar way to a plain concrete, whereas the damage of the ®ber evolves with the
®ber debonding, slip and pull-out of the matrix. Thus, the damage in the cross-section is measured by the loss
of the cross-sectional ``area'' of the matrix and the bond variation of the ®ber±matrix interface.

The parallel bar model has been previously employed in the study of plastic and brittle behavior of
materials (Krajcinovic and Silva, 1982). It has also been used to analyze the mechanical behavior of FRC
by Fanella and Krajcinovic (1985). In that model, it is assumed that once the tensile stress in the matrix is
higher than its tensile strength, the tensile load of the composite bar is transmitted to the ®bers alone, which
implies that the matrix is a purely brittle material. This is not the case for an FRC using conventional
concrete as the matrix. Therefore, in applying the model to the analysis of FRCs, it has to be modi®ed
because of the quasi-brittleness of the concrete matrix.

Consider the parallel bar model shown in Fig. 1. In the ®gure, L is the length of the specimen for a single
cracking system, or the crack spacing for a multiple cracking system. Every bar is a completely elastic

Fig. 1. Schematic diagram showing the parallel bar model.
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composite until the matrix damage is initiated. After the initiation of the matrix damage, the sti�ness of
such a bar decreases progressively, due to the sti�ness reduction of the matrix as well as the ®ber debonding
and slip.

Thus, the force fi in the ith bar is

fi � kcz
N

for 06 kcz6 fm and z P 0; �1�

fi � kdz
N

for kcz P fm and z P 0 �2�

in which N is the number of composite bars; kc=N is a constant, the sti�ness of each of N composite bars in
which no damage occurred; kd=N is the sti�ness of the bar in which the matrix has been damaged, which is a
random variable; fm is the force at which the matrix damage is initiated, and z is the extension of the total
specimen due to the active force F .

Consider the force and deformation in each of the composite bars in which the matrix has been dam-
aged. A parallel model, as has been commonly used in the composite law, is assumed for the damaged
matrix and the ®bers, as shown in the enlarged part of Fig. 1. However, the ®ber±matrix interface is no
longer ``perfectly bonded'', because of the ®ber debonding and sliding. Suppose, the elongation due to the
®ber (debonding and sliding) is a1z and that due to the matrix is a2z, then we have

fi � k0fa1z
MN

� kma2z
MS

; �3�

where k0f is an equivalent sti�ness of the ®ber that elongates a1z, including the elastic elongation and the slip
from the matrix; km is the sti�ness of the damaged matrix, which is a random variable depending upon the
damage accumulation. M is the total number of ®bers in each of the N composite bars; S is total number of
matrix bars in each of the N composite bars; a1 and a2 are coe�cients re¯ecting the deformation com-
ponents of the ®ber and the matrix, respectively, which will be discussed later. Note that a1 6� a2 in this
model.

The equilibrium of forces in the vertical direction yields

F �
XN

n�1

kcz
N
�
Xn

1

XM

m�1

k0fa1z
NM

"
�
XS

s�1

kma2z
SM

#
�4�

in which n is the number of composite bars in which the matrix has been damaged; m is the number of ®bers
that failed due to debonding and pull-out in the damaged matrix; and s is the number of damaged matrix
bars. The ®rst term on the right-hand side of Eq. (4) represents the contribution of the integral (undam-
aged) part of the composite cross-section, while the second term re¯ects the tensile force carried by the
®bers spanning the damaged matrix and the quasi-brittleness of the matrix (for a brittle matrix, the last
term can be assumed zero, as has been done by Fanella and Krajcinovic, 1985).

Eq. (4) can be further written as

F � kcz 1� ÿ xc� � k0f za1xc 1� ÿ xf� � km0za2xc 1� ÿ xc�2 �5�
in which

xc � n
N
� s

S
; xf � m

M
; �6�

km0 is the sti�ness of the matrix material before damage, and

F. Li, Z. Li / International Journal of Solids and Structures 38 (2001) 777±793 779



km � km0 1� ÿ xc�; �7�
xc and xf are the logical choices for the measure of damage accumulated in the cross-section of the FRC
specimen, which denote the damage of the composite due to the matrix damage and the ®ber damage
(debonding and pull-out), respectively. In Eq. (6), it is assumed that the ®bers and aggregates are uniformly
distributed in the composites.

The continuum form of Eq. (5) can thus be readily recovered by setting F � rAc, kc � EcAc=L, k0f � bf kc,
km0 � bmkc, and z � eL in which r is the nominal stress. The term e is the nominal strain, and bf and bm are
the sti�ness ratios. Thus,

r � Ec 1�
h
ÿ xc� � bfa1xc 1� ÿ xf� � bma2xc 1� ÿ xc�2

i
e: �8�

A clear implication can be seen from Eq. (8) that when xc � 0, or no damage is initiated, r � Ece, i.e., the
composite behaves elastically; when xc � 1, or the matrix is completely failed, r � Ecbfa1�1ÿ xf�e, the
contribution of the matrix disappeared; and when xc � xf � 1, or both the matrix is completely failed and
the ®bers are completely pulled out, r � 0, i.e., the composite cannot bear any load. Therefore, a reasonable
stress±strain relationship is obtained by this model.

3. Evolution of damage

3.1. Evolution of xc

Damage xc can be characterized by the cumulative degradation in the load carrying capacity of the
matrix. As mentioned earlier, xc � 0 denotes no damage in the matrix, whereas xc � 1 represents that the
matrix failed completely. Therefore, xc can be approximately represented by considering the damage
evolution of the matrix concrete.

There are many CDM-based models for plain concrete. To make things not too complicated, a simple
local approach proposed by Lùland (1980) will be used in this article. However, a minor modi®cation is
made to accommodate the present study. Assume that there is no damage below a strain level e0. The
damage evolution is evaluated as

xc �
0 for e < e0;
B1 eÿ e0� �n for e06 e6 et;
xct � B2 a2eÿ et� � for et < e6 eu=a2m;
1 for em > eu=a2m

8>><>>: �9�

in which e is the composite strain, a2m is a a2 when a matrix strain em reaches eu (®ctive ultimate strain),
where em is the strain of the matrix concrete. e0 is the strain at which the damage is initiated, et is the strain
corresponding to the tensile strength, fmt, of the concrete, and xct is the damage of concrete corresponding
to a strain of et. xct and the constants B1, B2, and n can be determined by

xct � 1ÿ fmt

Em0et

; �10�

n � f
�1ÿ f�t ; B1 � 1

1� nt
et� ÿ e0�ÿn

; B2 � ft
et

�11�

in which

f � fmt

Em0et

; t � et

eu ÿ et

: �12�
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The damage evolution and the stress±strain curve are roughly shown in Fig. 2. The denotations of e0, et,
eu, and xct can be found in that ®gure. In the above equations for xc, there are ®ve essential parameters,
namely, Em0, fmt, e0, et, and eu. Except for eu, which is a ®ctive ultimate strain, all other parameters can be
determined from the experimentally obtained stress±strain curves in a direct tensile test. Lùland (1980)
argued that the energy ratio between the speci®c energy consumed in microcrack formation within the
whole strained body (length L), and that consumed in further cracking of the fracture zone (with extension
of Dmax), remains constant, and independent of the water±cement, and aggregate±cement ratios used. This
assumption leads to

eu � 2

R
Dmax

L
et

�
ÿ fmt

Em0

�
� et �13�

in which R is the aforementioned energy ratio, which can be determined from experiments.

3.2. Evolution of xf

Damage xf characterizes the damage of the ®ber in a composite bar of damaged matrix, namely, the
fraction of ®bers that are debonded and pulled out. If no ®ber is debonded, the ®ber and the matrix un-
derwent the same deformation. If all ®bers are debonded and pulled out, the composite bar fails completely.

Damage xf can therefore be related to the ®ber debond length a and ®ber embedment length `e as

xf � a

`e

; �14�

where `e is the mean ®ber embedment length. From a statistical consideration, `e � `=4 for a random ®ber
distribution, where ` is the length of the ®ber.

Eq. (14) implies that when the ®ber debond length a � 0, no damage occurs, while for a � `e, the ®ber is
completely debonded and pulled out (xf � 1). Therefore, damage xf can characterize the failure of the ®ber
due to the interface debonding and ®ber pullout.

To evaluate the evolution of damage xf , it is necessary to examine the ®ber matrix interfacial behavior as
well as the cumulative distribution of the ®ber embedment length. A ®ber±matrix interfacial model has been
examined in detail by Stang et al. (1990a,b) in which the e�ect of the weak transition zone existing between
ordinary Portland cement paste and the ®ber was taken into consideration. In the model, it is assumed that
a pre-debonded interface (interfacial crack) exists with a length a (starting at where the ®ber and matrix
meet) in the ®ber±matrix interface. The ®ber with a constant cross-sectional area of A (with a diameter of df )

Fig. 2. Evolution of damage xc: (a) and nominal stress (b) related to strain for concrete matrix in uniaxial tension.
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and Young's modulus of Ef is embedded in the matrix with a mean embedment length of `e. The ®ber axial
displacement is denoted by U and is assumed to be constant over the ®ber cross-section. The bonded zone is
assumed to be elastic with a sti�ness k, while the debonded zone is represented by a constant shear force qf .
The Poisson ratio is neglected for both ®ber and the boundary layer (i.e., the shear lag). According to this
model, the displacement at the ®ber free end U � can be written as

U � � qfD

EfAw2
� qf`

2

e

2EfA
a

`e

� �2

� qf`eD
EfAw

a

`e

� �
tanh w`e 1

��
ÿ a

`e

��
�15�

in which D and w are de®ned as

D � 1

2
�

����������������������������������
1

2

� �2

� 2pdfkC
q2

f

s
; w �

��������
k

EfA

r
; �16�

and C is the interface critical energy release rate.
At the applied load F, the damaged composite bar will elongate z. Before the matrix cracks, it can be

assumed that there is no ®ber slip in the matrix (although damage may have been initiated). Then, the
deformation of the matrix is approximately equal to the elongation of the composite, z, i.e., a2 � 1, and the
contribution of ®bers to the composite elongation can be neglected, or a1 � 0. After the matrix cracks, a1

will normally be not equal to a2. The deformation of the ®ber and the matrix can then be written as

a1z � 2U �; a2z � emL: �17�
Combining Eqs. (17), (15) and (14), it can be obtained that

L
2

a1e � qfD

Ef Aw2
� qf`

2

e

2Ef A
x2

f �
qf`eD
Ef Aw

xf tanh w`e 1�� ÿ xf�
�
; �18�

provided that

e > ef
0 �

2qfD

a10LEfAw2
; �19�

which suggests that no damage related to ®bers occurs before debonding is initiated. In Eq. (19), a10 is the
a1 corresponding to the initial debonding strain ef

0. xf can be obtained numerically by solving Eq. (18).
Once xc and xf are determined, the continuum model can then be established through Eq. (8). Para-

meters related to the model will be discussed in the following section.

4. Determination of the parameters

Several parameters have to be determined before the application of the derived model. These include (1)
sti�ness ratios bf and bm; (2) composite elastic modulus Ec; (3) length L; (4) the ®ber±matrix interface
parameters: w, qf , and C; (5) the parameters related to matrix concrete: e0; et; eu; fmt, and Em0; (6) damage
related to ®bers xf , and (7) coe�cients a1 and a2;

4.1. Sti�ness ratios bf and bm

An exact estimation of bf will be very di�cult, because the equivalent sti�ness of the ®ber varied during
the process of ®ber debonding and slipping. However, an average sti�ness can be estimated by the following
analysis.
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Consider a ®ber with an average embedment length of `=4 that bridges a transverse crack. One half of
this embedment length is debonded, in a statistical sense, and the other half is perfectly bonded through
elastic adhesional bond. The stress transfer between the ®ber and the matrix will cause an average force
build-up in the ®ber, which can be derived as (set a � `=8), according to the interface model (Stang et al.,
1990a):

P f � 4qf D

w2` cosh w`
8

cosh
w`
8

� ��
ÿ 1

�
� 3qf`

32
: �20�

The average deformation in the ®ber, by taking into consideration of the elastic deformation of the ®ber
only, can be derived as

U f � 4qf D

Ef Aw3`
1

"
� 3�w`�2

128

#
tanh

w`
8

� �
: �21�

The average equivalent sti�ness for a single ®ber can be therefore estimated as

k0f
MN
� P f

U f

� EfAw

128� 3�w`�2 128 tanh
w`
16

� ��
� 3

D

� �
�w`�2 coth

w`
8

� ��
: �22�

The total number of ®bers MN in a composite cross-section will be (for 2-D random distribution)
(Hannant, 1978)

MN � 2VfAc

pA
: �23�

Therefore,

bf �
`

2`c

k0f
kc

� `

2`c

k0f
EcAc=L

� `Ef VfwL

pEc`c�128� 3w2`2� 128 tanh
w`
16

� ��
� 3

D

� �
w2`2 coth

w`
8

� ��
�24�

in which a length e�ciency factor `=�2`c� is incorporated.
The sti�ness ratio bm can be estimated from its de®nition as

bm �
km0

kc

� AmEm0=L
AcEc=L

� Em0

Ec

1� ÿ Vf�: �25�

4.2. Composite elastic modulus Ec

For a composite containing short aligned ®bers, a ``Rule of Averages'' is used (Hull and Clyne, 1996) to
derive the composite modulus, which can be expressed as

Ec � VfEf 1

�
ÿ tanh nr`=df� �

nr`=df

�
� 1� ÿ Vf�Em0: �26�

However, for composite containing randomly distributed short ®bers, Eq. (26) has to be modi®ed. Taking
account of the ®ber orientation e�ect, g, Eq. (26) can be modi®ed as

Ec � cVfEf � 1� ÿ Vf�Em0; �27�
where

c � g 1

�
ÿ tanh nr`=df� �

nr`=df

�
; �28�
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in which g is the ®ber orientation e�ciency factor de®ned as (Bentur and Mindess, 1990)

g �
1
6

for fully random fibers in 3-D;
1
3

for random fibers in 2-D;
1
2

for planar mat with aligned fibers in the XY direction;

8><>: �29�

and nr is a dimensionless constant given by

nr � 2Em0

Ef 1� mm� � ln 1=Vf� �
� �1=2

; �30�

where mm is the Poisson's ratio of the matrix.

4.3. Length L

The length L is the crack spacing in a multiple cracking system. The crack spacing is di�cult to measure
experimentally. Therefore, an analytical result is used instead in this study.

The ACK model (Aveston et al., 1971) for a continuous aligned ®ber composite assuming frictional
stress transfer gives out a minimum crack spacing of

`s � Vm

Vf

� �
fmtdf

4sfu

; �31�

where sfu is the frictional bond strength of the ®ber±matrix interface, and fmt is the tensile strength of the
concrete matrix. After crack saturation (no further crack will be formed), a ®nal crack spacing of between `s

and 2`s is expected. An average crack spacing of 1:337 `s is obtained by Kimber and Keer (1982).
Taking into consideration the ®ber length e�ect and the orientation e�ect (Bentur and Mindess, 1990),

this average crack spacing becomes

L � 1:337
2`c

`

� �
p
2

� � Vm

Vf

fmtdf

4sfu

� 1:050
`c

`

Vm

Vf

fmtdf

sfu

; �32�

where `c is the critical ®ber length, which is given by

`c � rfudf

2sfu

�33�

in which rfu is the ultimate tensile strength of the ®ber, which can be found in Table 1 for the ®bers used in
this study.

Table 1

Summary of the properties of the ®bers used in the study

Fiber name Fiber type Fiber length

` (mm)

Fiber dia-

meter df (mm)

Fiber aspect

ratio `=df

Density

(g=cm3)

Tensile

strength

(GPa)

Young's

modulus

(GPa)

Dramix I Steel 30 0.5 60 7.8 1.2 200

Dramix II Steel 50 0.5 100 7.8 1.2 200
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4.4. Interface parameters w, qf , and C

Numerous e�orts have been made with respect to the ®ber±matrix interfacial properties, both experi-
mentally and analytically. The interface parameters w, qf , and C are therefore best determined based on
experimental results. Unfortunately, there is no direct measurement of these parameters from the literature,
and very few experimental investigations into hooked ®bers (Dramix ®bers in this study) were made.
Therefore, these parameters were determined based on previous studies (e.g., Bentur and Mindess, 1990;
Gray, 1984; Li et al., 1991; Pompo et al., 1996). According to Li et al. (1991), parameter w is a material
property independent of ®ber embedment length. Therefore, for Dramix steel ®bers used in this study, the
following values were used w � 90 mÿ1, sfu � 3:80 MPa, qf � sfupdf � 5969 N/m, C � 17:2 N/m.

4.5. Matrix parameters e0, et, eu, fmt and Em0

The properties of the matrix concrete have been studied extensively. These parameters are determined
from the experimental results of these studies. The results shown in Table 2 are obtained based on direct
tensile tests on 10 specimens, which had mix proportions of C:W:S:A� 1:0.45:2:0.65.

Note that e0 is measured as the strain corresponding to the stress of 40% fmt from the stress±strain curve.
This is based on observations from the acoustic emission measurement that the microcracking is initiated at
a stress of about 40% fmt, as described by Li (1998) and Li and Li (1999). Strain is measured as the average
displacement over the gage length of the Linear variable di�erential transformer (LVDT), where the av-
erage displacement is based on those detected by the two opposite LVDT transducers among which, one of
them is used as feedback control. In addition, Possion's ratio mm � 0:17 is used for the matrix concrete, as
shown by Gray (1984).

4.6. Damage related to ®bers xf

The measure of damage related to ®bers, xf , is related to the composite strain by Eq. (18), from which xf

can be solved numerically when e > ef
0. An extreme value of e exists for Eq. (18), representing a moment at

which successive ®ber debonding will be terminated. The corresponding xfc, a critical value representing the
termination of successive ®ber debonding beyond which adhesional bond is completely deteriorated, can be
obtained by taking a ®rst-order derivative of Eq. (18) to xf , and let it be zero as

xfc tanh w`e 1��� ÿ xfc�
�	2 � 1

w`e

tanh w`e 1�� ÿ xfc�
�ÿ 1

�
ÿ 1

D

�
xfc � 0; �34�

which can also be obtained numerically. The existence of a critical damage, xfc, can be attributed to the
ideal interface property assumption. When the bonded length of the ®ber is reduced to a critical length, the
adhesional bond will deteriorate completely such that only frictional bond exists. Therefore, xfc can be used
as an indication of the maximum load the composite can carry.

Table 2

Property parameters of the matrix concrete

Parameters fmt (MPa) Em0 (GPa) et �lm/m) e0 �lm/m) eu
a (lm/m)

Average 3.97 28.86 148.30 48.80 406.3

Standard deviation 0.17 2.40 7.8 5.1 45.8

Coe�cient of variation (%) 5 8 6 11 12

a Based on Eq. (13).
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4.7. Coe�cients a1, a2, a10 and initial debonding strain ef
0

As mentioned previously, coe�cients a1 and a2 represent the composite deformation contribution from
the ®ber and from the matrix, respectively. It is not quite understood, how much fractions of deformation
are distributed for the two phases after the matrix cracks. However, the following boundary conditions
have to be satis®ed:

�1� a1 � 0; a2 � 1 for e6 et;
�2� a16 1; a26 1 for e > et;

�35�

which implies that before the matrix cracks, the ®bers have approximately no contribution to the composite
deformation. After that, they both contribute to the composite deformation.

Naaman and Homrich (1989) proposed an estimation of the strain capacity (peak point strain of the
tensile stress±strain curve), eca as

eca � eu � KVf

`

df

�36�

in which eca is the strain at maximum tensile stress of the composite, eu is the ultimate tensile strain of the
unreinforced matrix, and K is a constant depending on the ®ber type, which has to be determined from
experiments. Based on the experimental results from this study, eu� 406.3�10ÿ6 for matrix concrete, and

K � 0:00099 for Dramix I steel fiber;
0:00115 for Dramix II steel fiber:

�
�37�

Eq. (36) implies that the strain capacity of the composite is composed of two parts: the contribution from
the matrix eu and the contribution from the ®bers KVf`=df . It is therefore evident that

�3� a1 � a1m � KVf `=df

eca

�4� a2 � a2m � eu

eca

when e � eca �38�

in which

a1 � a2 � 1 �39�
is implied.

The deformation contribution of the matrix, after the matrix cracks, will largely come from the post-
peak opening of the crack (softening regime of the stress±strain curve). However, as has been examined by
Balaguru and Shah (1992), the response of the matrix in an FRC varied with the content and type of the
reinforcement. Therefore, it is rational to assume, based on the assumption of the ®ctive ultimate strain, as
shown in Fig. 2, that

a2 � g
eu ÿ em

eu ÿ et

� em

e
; �40�

where g is a constant dependent on the ®ber volume fraction Vf and the type of the ®ber used in the FRC,
which has to be determined from experimental results. In this study, it is obtained that

g � 2:05ÿ 2:5Vf for Dramix I steel fiber; Vf 6 9%;
3:85ÿ 45:0Vf for Dramix II steel fiber; Vf 6 5%:

�
�41�

Therefore, strain in the matrix em can be estimated by

em � eu

1� euÿet

ge

; �42�
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which implies that when e � et, and g � 1, then a2 � 1. Whereas when e � eca � �eu ÿ et�, em � eu, and
a2 � a2m. Thus, it meets the boundary conditions (Eqs. (35) and (38)), if g is set at 1 when e6 et.

Eqs. (40) and (42) implies that

a2 � eu

e� euÿet

g

: �43�

Therefore, from Eq. (39), we have

a1 � ge� �1ÿ g�eu ÿ et

ge� eu ÿ et

: �44�

The coe�cient a10 and the initial debonding strain ef
0 can then be evaluated as follows. From Eq. (44), we

have

a10 � gef
0 � �1ÿ g�eu ÿ et

gef
0 � eu ÿ et

: �45�

Eq. (19) can be rewritten as

a10e
f
0 �

2qf D

LEfAw2
: �46�

Thus, a10 and ef
0 can then be obtained numerically by solving an equation combining Eqs. (45) and

(46).

5. Numerical results

The constitutive model characterized by Eq. (8) for the prediction of tensile stress±strain curves of FRC
containing Dramix steel ®bers shows strain hardening responses, and was tested against the experimental
results obtained in this study. The parameters needed for the model are given to a large extent in the
previous sections. Some of them, calculated by the corresponding equations, are given in Table 3. A
comparison between the model predicted stress±strain relationship and that obtained from experimental
investigations are shown in Figs. 3±5, for FRC containing Dramix type I steel ®ber at a Vf of 6%, 7%, and
8%, respectively. Those for FRCs containing Dramix type II steel ®bers are shown in Figs. 6±8, at a ®ber
volume fraction of 3%, 3.5%, and 4%, respectively. Parameters related to the ®ber±matrix interface (w, k

Table 3

Summary of the numerical results from the analytical model

Parameters Unit Dramix I ®ber (Vf ) Dramix II ®ber (Vf ) Comments

6% 7% 8% 3% 3.5% 4%

bf ± 0.0453 0.0443 0.0433 0.0664 0.0656 0.0649 Eq. (24)

bm ± 0.8778 0.8588 0.8402 0.9357 0.9253 0.9151 Eq. (25)

Ec GPa 30.903 31.251 31.600 29.919 30.097 30.276 Eq. (26)

`c mm 78.95 78.95 78.95 78.95 78.95 78.95 Eq. (33)

L mm 22.61 19.18 16.60 28.00 23.88 20.79 Eq. (32)

xfc ± 0.8024 0.8024 0.8024 0.8168 0.8168 0.8168 Eq. (34)

eca 10ÿ3 3.970 4.564 5.158 3.856 4.431 5.006 Eq. (36)
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and C) are selected based on results from references. Those related to the matrix are determined experi-
mentally (Li et al., 1998; Li, 1998). Note that only the hardening regime of the composite response are
plotted in these ®gures.

These ®gures show a good agreement between the experimental results and the model predicted results,
except for the FRC containing Dramix type II steel ®bers at a Vf � 3% and 3.5%. At a comparatively lower
®ber content, the post-cracking behavior of a composite will be dominated by the ®ber pull-out from the
matrix along the transverse crack. For Dramix type II steel ®bers, anchorage e�ect provided by the hooked
ends is not quite understood, thus not incorporated in the model, which may be re¯ected in the model
predicted results.

Fig. 3. Tensile stress±strain curves for FRC containing 6% Dramix type I steel ®bers: comparison of the experimental results with

model predicted.

Fig. 4. Tensile stress±strain curves for FRC containing 7% Dramix type I steel ®bers: comparison of the experimental results with

model predicted.
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6. Summary and conclusions

In this article, an analytical model for the tensile behavior of an FRC shows a strain hardening response,
which is developed based on the principles of the CDM. Assuming a parallel bar model in which the ®bers
and the concrete were connected by parallel±series components, an equilibrium equation was established
for the FRC. By taking two damage measures related to the matrix and to the ®bers respectively, a con-
tinuum form of the equation was then established. The evolution of the two measures of damage was then
evaluated in detail. The ®ber±matrix interface properties are incorporated explicitly in the model.

A good agreement between the model predicted stress±strain curves and the experimentally obtained one
shows that the analytical model derived from the principles of the CDM is quite successful. The model

Fig. 5. Tensile stress±strain curves for FRC containing 8% Dramix type I steel ®bers: comparison of the experimental results with

model predicted.

Fig. 6. Tensile stress±strain curves for FRC containing 3% Dramix type II steel ®bers: comparison of the experimental results with

model predicted.
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requires a knowledge of the matrix (®ve parameters) and of the ®ber±matrix interface properties (three
parameters), which has to be determined experimentally.
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Fig. 7. Tensile stress±strain curves for FRC containing 3.5% Dramix type II steel ®bers: comparison of the experimental results with

model predicted.

Fig. 8. Tensile stress±strain curves for FRC containing 4% Dramix type II steel ®bers: comparison of the experimental results with

model predicted.
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Appendix A. Notations

A cross-sectional area of the ®ber (m2)
Ac initial cross-sectional area of the FRC specimen (m2)
Am initial cross-sectional area of the matrix (m2)
a debonded length of the ®ber±matrix interface (m)
B1 a coe�cient de®ned by Eq. (11) (ÿ)
B2 a coe�cient de®ned by Eq. (11) (ÿ)
D a dimensionless constant de®ned by Eq. (16) (ÿ)
Dmax extension of the fracture zone in a matrix concrete (m)
df diameter of the ®ber (m)
Ec elastic modulus of the composite (Pa)
Ef elastic modulus of the ®ber (Pa)
Em elastic modulus of the matrix (Pa)
Em0 elastic modulus of the uncracked matrix (Pa)
F externally applied force (N)
fi force in composite bar (N)
fm force in the matrix at which matrix damage is initiated (N)
fmt tensile strength of the matrix (N/m)
g a constant related to ®ber type and ®ber content, appeared in Eq. (40) (ÿ)
K a dimensionless constant related to ®ber type (ÿ)
k ®ber±matrix interface shear sti�ness (N=m2)
kc overall sti�ness of the composite cross-section (N/m)
kd sti�ness of the damaged composite bar (N/m)
k0f equivalent sti�ness of the ®ber in an FRC (N/m)
km sti�ness of the damaged matrix (N/m)
km0 sti�ness of the uncracked matrix (N/m)
L average crack spacing for composite showing multiple cracking response, or length of the

specimen for composite showing single cracking response (m)
` length of the ®ber (m)
`c critical length of the ®ber (m)
`e embedment length of the ®ber (m)
`e mean embedment length of the ®ber (m)
`s average crack spacing of the composite (m)
M total number of ®bers in each of N composite bars (ÿ)
m number of damaged ®bers (ÿ)
N number of the composite bars (ÿ)
n number of composite bars in which the matrix has damaged (ÿ)
nr a dimensionless constant de®ned by Eq. (30) (ÿ)
P force in the ®ber (N)
P f average force in the ®ber (N)
P � pull-out force at the end of a ®ber (N)
q shear force per unit ®ber length of the ®ber±matrix interface (N/m)
qf constant frictional shear force of the ®ber±matrix interface (N/m)
qF maximum adhesional shear force of the ®ber±matrix interface (N/m)
R Energy ratio between the speci®c energy consumed in micro-crack formation and that

consumed in further cracking of the fracture zone (ÿ)
S number of the matrix bars in each of n damaged composite bars (ÿ)
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